New use for old multiple sclerosis drug shows great promise for a cure

“Red blood cells from MS patients bound more zinc, C-peptide and albumin than cells from control subjects. Treatment with interferon beta reduced this interaction in MS samples down to control levels. Albumin boosted zinc and C-peptide binding to MS red blood cells, and this effect went away with interferon beta treatment,” reported the researchers in their statement.

The conclusion from this study was that it’s likely that the drug is inhibiting albumin binding, keeping it from delivering its cargo of C-peptide and zinc to red blood cells so that NO can be made. This development could produce a new cure for MS one that is viable and easily tolerated by patients.

The research was published in ACS Chemical Neuroscience.

Abstract:

Multiple sclerosis (MS) is an inflammatory disease characterized by damage to the myelin sheath surrounding axons in the central nervous system. While the exact mechanism of this destruction is unknown, excess nitric oxide (NO) and adenosine triphosphate (ATP) have been measured in tissues and liquids obtained from people with MS. Here, incubation of interferon-beta (IFN-β), an MS drug with an unknown mechanism of action, with red blood cells (RBCs) obtained from people with MS provide evidence of a potential hypermetabolic state in the MS RBC that is decreased with IFN-β intervention. Specifically,binding of all three components of an albumin/C-peptide/Zn complex to MS RBCs was significantly increased in comparison to control RBCs. For example, the binding of C-peptide to MS RBCs was significantly increased (3.4 ± 0.1 nM) compared to control RBCs (1.6 ± 0.2 nM). However, C-peptide binding to MS RBCs was reduced to a value (1.6 ± 0.3 nM) statistically equal to that of control RBCs in the presence of 2 nM IFN-β. Similar trends were measured for albumin and Zn binding to RBCs when in the presence of IFN- β. RBC function was also affected by incubation of cells with IFN-β. Specifically, RBC-derived ATP and measurable membrane GLUT1 were both significantly decreased (56 and 24%, respectively) in the presence of IFN-β. Collectively, our results suggest that IFN-β inhibits albumin binding to the RBC, thereby reducing its ability to deliver ligands such as C-peptide and Zn to the cell and normalizing the basal hypermetabolic state.

Leave a Comment