A revolutionary pill may soon replace insulin injections

This membrane enables direct insulin delivery to the liver, bypassing the stomach altogether. Not only does this allow for the insulin to be rapidly available, but it also saves the wastage of insulin that occurs when it goes through the stomach.

While 100 international units (IU) of insulin are used per shot in an injection to compensate for the loss when insulin is swallowed, researchers have been using 500IU of insulin in a single dose. In their experiments on rats, the UBC researchers found that nearly 100 percent of the insulin from the tablets went straight to the liver and none to the stomach. A dissolvable tablet that avoids wasting insulin along its way to the liver is an added bonus that the UBC researchers have managed with their pill.

Additionally, changing the mode of insulin delivery will also help save a significant quantity of medical waste, resulting from the injections that end up in landfills.

The researchers still need to test their dissolvable pill in humans. If all goes well, it could usher in a new era of diabetic treatment, which is easy to access and sustainable.

The findings of the study were published in the journal Scientific Reports.

Abstract

Insulin nanoparticles (NPs) with high loading content have found diverse applications in different dosage forms. This work aimed to evaluate the impact of freeze-drying and spray drying process on the structures of insulin-loaded chitosan nanoparticles, with or without mannitol as cryoprotectants. We also assessed the quality of these nanoparticles by redissolving them. Before dehydration, the chitosan/sodium tripolyphosphate/insulin crosslinked nanoparticles were optimized to 318 nm of particle size, 0.18 of PDI, 99.4% of entrapment efficiency, and 25.01% of loading content. After reconstitution, all nanoparticles, except the one produced by the freeze-drying method without using mannitol, maintained their spherical particle structure. The nanoparticles dehydrated by spray drying without mannitol also showed the smallest mean particle size (376 nm) and highest loading content (25.02%) with similar entrapment efficiency (98.7%) and PDI (0.20) compared to mannitol-containing nanoparticles dehydrated by either spray drying or freeze-drying techniques. The nanoparticles dried by spray drying without mannitol also resulted in the fastest release and highest cellular uptake efficacy of insulin. This work shows that spray drying can dehydrate insulin nanoparticles without the need for cryoprotectants, creating a significant advantage in terms of greater loading capacity with lower additive requirements and operating costs as compared to conventional freeze drying approaches.

Leave a Comment